RDM1E

Electronic Moulded Case Circuit Breaker

Application

RDM1E series RDM1E series electronic Moulded case circuit breaker is a new designed MCCB developed and manufactured by adopting international advanced technology. Its rated insulation voltage is 800V, is applied to the circuit of AC 50HZ, rated working voltage 400V, rated current up to 1250A as infrequently switch and starting of motor. MCCB has the functions of overload long delay inverse time limit, short-circuit short delay inverse time limit, short-circuit short delay definite time limit, short-circuit instantaneous and undervoltage protection, to protect the circuit and power equipment against being damage.

It has the characteristics of small volume, high breaking capacity, short arcing distance, and anti-vibration. It cannot be inverted wiring, only can be 1, 3, 5 connect to the power line, 2, 4, 6 connect to the load line. MCCB has the isolation function, its symbol is: "————"

Normal working condition and Installation environment

- 1.Altitude of installation location no more than 2000m
- 2.Temperature: -5°C~+40°C, and the average temperature within 24h no higher than +35°C
- 3.The relative humidity: no more than 50%, when temperature is +40°C. The product can allow the higher humidity under lower temperature, for instance, when the humidity reaches to 90% when it is at +20°C.
- 4. Class of pollution: class 3
- 5. Installation type of main circuit: class III, installation type of auxiliary circuit and control circuit: class II.
- 6. Using category: A or B.

Main function characteristics

The intelligent controller is the key component of the MCCB, it is used in motor or power distribution protection to realize the integration of measurement, protection, control and communication functions, so that the circuit and power supply equipment are protected from overload, short circuit, grounding and other fault hazards. Using intelligent MCU micro-processing controller, stable and reliable, can provide power, as long as one phase is connected, when the current is not lower than 20% of its rated value, it can ensure the normal operation of the protection function. Selective cooperation with three-stage protection:1) The circuit breaker of category B has the selective cooperation if it is connected with other short-circuit protection device in the same circuit under short-circuit conditions;

- 2) Adjustment of protection function parameters such as overload delay, reverse delay, short circuit delay (reverse delay, fixed delay), short circuit instantaneous, etc.:
- 3) It has three parameter settings of operating current and operating time, and can be adjusted in 4-10 gears: the user can set and adjust the controller according to the load current requirements, and the corresponding function can be turned off according to the user's requirements (customized). Instantaneous tripping function of high current, when the circuit breaker is closed and running, if a short circuit and high current (≥20lnm) are encountered, the magnetic tripping mechanism of the circuit breaker can be tripped directly, and the double protection is more reliable and safe. Has the function of tripping test, input DC12V voltage to test the operating characteristics of the circuit breaker; Fault self-diagnosis function: protect and detect the working status and operating conditions of the intelligent controller itself, with pre-warning indication and overload indication: when the load current reaches or exceeds the set value, the light source of the luminous column is exported; protection and detection; Dual air gap technology of magnetic flux converter: more reliable and stable operation, eliminating malfunction, reliable tripping, and low power; High protection accuracy: overload protection, short circuit, short delay protection, action accuracy of ±10%; short circuit instantaneous protection value accuracy of ±15% depends on the operating current; The installation is interchangeable: the dimensions and installation dimensions are the same as the RDM1 series MCCB with the same specifications and dimensions.

Optional functions:

- 1) There is a temperature monitoring and protection function: when the ambient temperature exceeds the set value (the default setting is 85°C), the controller will output an alarm photoelectric signal or make the circuit breaker switch off;
- 2) Dual passive signal output function: for signaling (or alarm), capacity AC230V5A;
- 3) It has overload thermal memory function: overload thermal memory function, short circuit (short delay) thermal memory function;
- 4) With fire-fighting excitation function: overload alarm is not tripped (a pair of passive contacts are provided) and the excitation tripping function or communication function is provided;
- 5) With communication functions: standard RS232, RS485, Modbus fieldbus protocols;

Protection:
☐ Overload long delay action ammeter IR adjustment, depending on different rated current of the circuit breaker, can be adjusted from 4 to 10 steps;
☐ Long delay action time TR adjustment, adjustable in 4 steps;
☐ Short-circuit short delay action current Isd adjustment, adjustable in 10 steps;
☐ Short delay action time tsd adjustment, adjustable in 4 steps;
☐ Short-circuit instantaneous action ammeter li adjustment, adjustable in 8, 9, or 10 steps
☐ Pre-alarm action current Ip adjustment, adjustable in 7 steps.
Other functions:
☐ A test terminal for checking the current setting value of the electronic release (or release test).
☐ Running indication;
☐ Pre-alarming indication;
☐ Release button

Main Technical Specification

Model		RDM1	E-125	RDM1	E-250	RDM1	E-400	RDM1	E-630	RDM1	E-800	
Frame current Inr	m(A)	12	25	2	50	40	00	63	30	80	00	
Breaking capacity	y class	M	Н	M	Н	M	Н	M	Н	M	Н	
Rated current In(A)	32、63、100		2	50	40	400		630		800	
Pole		3,	4	3,	4	3、	4	3	3	3、	4	
Rated voltage Ue	e(V)	AC400										
Rated insulated v	voltage Ui(V)	800										
						80	00					
Rated limited sho capacity Icu(kA)	short-circuit breaking 35 50 35 50 50 70 50							70	50	70		
Rated working st capacity Ics(kA)	hort-circuit breaking	25	35	25	35	35	50	35	50	35	50	
Rated short time lcw 1S(kA)	withstand current	ţ	5	!	5	5	5	1	0	10		
Using category		E	3	E	3	Е	3	E	3	Е	3	
Arc distance(mm))	€	50	€	50	≤1	00	≤1	≤100		00	
Operation	Power on(Times)	15	00	1000		1000		1000		50	00	
performance	Power off(Times)	85	00	70	000	4000		4000		30	00	
Front plate wiring)			0		0)	
Back plate wiring)	(\supset				\supset			
Plug-in wiring)	(\supset))	
Drawer wiring		-	_	-	_)			
Under voltage rel	ease		\supset	(\supset)			
Shunt release			\supset	(\supset				\supset)	
Auxiliary contact			\supset	(\supset							
Alarm contact			\supset		\supset							
Motor operation r	nechanism		\supset		\supset							
Manual operation mechanism)			0				
Hand test device			\supset	\circ		\circ		\circ				
Intelligent control module		\circ		\circ		\circ		\circ		0		
Test power modu	le		\supset	\circ		\circ		\circ				
LCD display mod	ule		\supset		\supset					\circ		

Characteristics of release

 $\hfill \square$ Characteristic of the electronic release

Breaker is installed current sensor with effective value sampling. MCCB is with the functions of overload long delay inverse time, short-circuit short delay inverse time, short-circuit short delay definite time, short-circuit instantaneous action and so on, the user can set the protection characteristic they need.

Release characteristic as Fig. 1

☐ Overload long delay inverse time protection action characteristic are shown in table 3

 $\hfill \square$ Short-circuit short delay protection action characteristic are shown in table 4

[☐] Short-circuit instantaneous protection action characteristic are shown in table 5

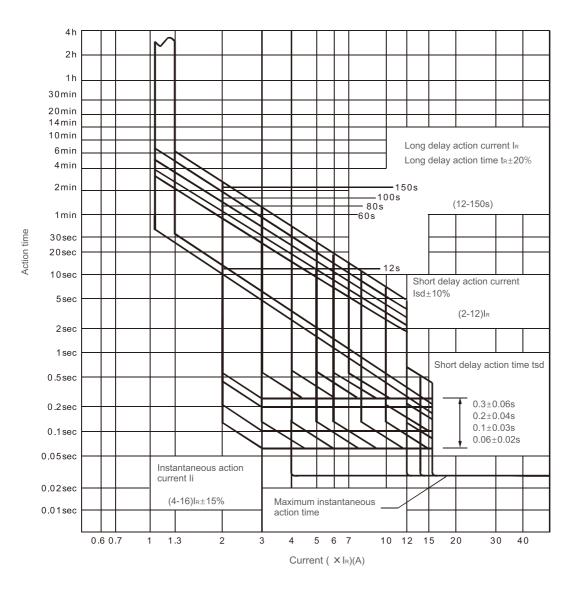


Figure 1 RDM1E-125~800 release characteristic curve

Table 3

Current				Action time	(s)						
	1.05I _R		> 2h without tripping								
Power	1.3I _R			≤1h trippin	g						
distribution type	01	Action time T _R	12	60	80	100	150				
type	2I _R	Setting time T _R	12	60	80	100	150				
	1.05I _R		> 2h without tripping								
Motor	1.2I _R		≤1h without tripping								
protection	1.5I _R	Action time T _R	21.3	107	142	178	267				
type	2I _R	Setting time T _R	12	60	80	100	150				
	7.2I _R	Action time T _R	0.93	4.63	6.17	7.72	11.6				
	Tripping I	evel	/	10A	10	20	30				
Note: 1. Action time	conforms to $I^2T_R=(2I_R)^2tR$, $(1.2Ir \leqslant$	1 <lsd); 2.="" action="" error<="" td="" time=""><td>±20%; 3. Return</td><td>time is not less t</td><td>han 70% of the a</td><td>ction time</td><td></td></lsd);>	±20%; 3. Return	time is not less t	han 70% of the a	ction time					

Table 4

		Current Isd	Action time(S)							
Short delay action characteristic		≤0.9 lsd	Without tripping							
		≥1.1 lsd	tripping							
	Inverse time protection	lsd ≤I<1.5 lsd								
			Setting time tsd(s)	0.06	0.1	0.2	0.3			
Short delay protection	Fixed time protection	1.5 lsd≤l <li< td=""><td>Error(s)</td><td>±0.02</td><td>±0.03</td><td>±0.04</td><td>±0.06</td></li<>	Error(s)	±0.02	±0.03	±0.04	±0.06			
·			Return time(s)	/	/	0.14	0.21			
Accuracy		Inverse time action error $\pm 10\%$								

Table 5

	Current	Action time(S)
Technical parameter of accessories	≤0.85li	Without tripping
	≥1.15li	Tripping

Rated value of auxiliary contact and alarming contact to see table

Table 6

Classify	Frame rated current Inm(A)	Conventional thermal	Rated working current			
	Traine rated current min(A)	current Ith(A)	AC400V	DC220V		
Auxiliary contact	Inm≤400	3	0.3	0.15		
Auxiliary Contact	Inm≥400	3	0.4	0.15		
Alarm contact	100≤Inm≤800	3	0.3	0.15		

Rated control power voltage (Us) and rated operating voltage (Ue) of control circuit release and the motor mechanism to see table 7

Table 7

Туре		Rated voltage(V)							
туре		AC :	DC						
Dalana	Shunt release	Us	230 400	110 220					
Release	Under voltage release	Ue	230 400						
Motor mechanism		Us	230 400	110 220					

☐ When the applied voltage of the shunt release is between 70%~100% of the rated control supply voltage, the circuit breaker shall be reliably opened. ☐ When the supply voltage drops to within 70%~35% of the rated operating voltage of the undervoltage release, the undervoltage release can reliably break the circuit breaker, when the supply voltage is lower than 35% of the rated operating voltage of the undervoltage release, the undervoltage release can ensure that the circuit breaker can be closed reliably.

☐ The electric operating mechanism can reliably close the circuit breaker when the supply voltage is between 85% and 110% at the rated voltage.

☐ Power loss and capacity reduction factor

Power losses are shown in Table 8

Table 8

Model	Energizing ourrent (A)	Total three phase power loss (VA)					
Model	Energizing current (A)	Front and rear wiring	Plug-in wiring				
RDM1E-125	125	35	40				
RDM1E-250	250	62	70				
RDM1E-400	400	115	125				
RDM1E-630	630	150	170				
RDM1E-800	800	262	294				

The capacity reduction factors for changes in ambient temperature are shown in Table 9

Table 9

Model	+40°C	+45°C	+50°C	+55°C	+60°C
RDM1E-125	1In	0.95ln	0.89ln	0.84ln	0.76ln
RDM1E-250	1In	0.96ln	0.91ln	0.87ln	0.75ln
RDM1E-400	1In	0.94ln	0.87ln	0.81ln	0.74ln
RDM1E-630	1In	0.94ln	0.87ln	0.81ln	0.74n
RDM1E-800	1In	0.88ln	0.83ln	0.79ln	0.72ln

Appearance and installation dimension

Appearance dimension as Fig. 2, Fig. 3, Fig. 4, Fig. 5, Fig. 6 and table 10

- (1) Front of board wiring appearance dimension as Fig. 2 (X-X,Y-Y is the center of 3P circuit breaker)
- (2) Rear wiring appearance dimension as Fig. 3, Fig. 4
- (3) Plug-in front of board wiring appearance dimension as Fig. 5
- (4) Plug-in rear wiring appearance dimension as Fig. 6

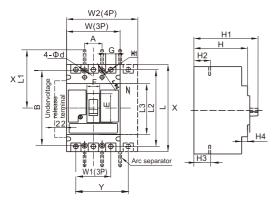


Fig.2 Fixed type front of board wiring

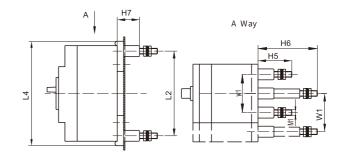


Fig.3 RDM1E-125, 250 Fixed type rear wiring

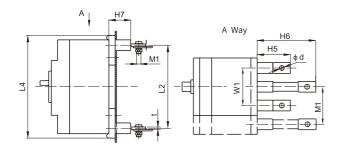


Fig. 4 RDM1E-400, 630, 800 Fixed type rear wiring

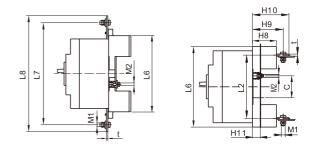


Fig.5 Plug-in front of board wiring (three Pole) Fig.6 Plug-in rear wiring (three pole, four pole)

Table 10

Madal		Front of board wiring													
Model	W	W1	L	L1	L2	L3	Н	H1	H2	НЗ	H4	Е	F	G	W2
RDM1E-125	92	60	150	100	132	88.5	93	112	29	29	12	50	22	18	122
RDM1E-250	107	70	165	132	144	102	90	110	24	24	5	62	22	22	142
RDM1E-400	150	96	257	220	224	175	107	147	38	38.5	5	89	65	33	198
RDM1E-630	150	96	257	220	224	175	107	147	40	41.5	5	89	65	33	-
RDM1E-800	210	140	280	240	243	205	116	155	42	45	4	81.5	66.5	44	280

Model	Rear of board wiring							Plug-in wiring								
	L4	H5	H6	H7	M1	d	t	L6	H8	H9	H10	H11	M1	M2	L7	L8
RDM1E-125	164	53	93	35	M8	-	-	168	50	64	76	18	M8	M6	220	250
RDM1E-250	173	55	100	35	M10	8.5	_	186	50	72	87	18	M8	M6	252	276
RDM1E-400	267	46	83	37	M12	12	8.5	280	60	84	107	21	M10	M8	357	387
RDM1E-630	295	46	83	_	M12	12	8.5	280	60	84	107	21	M10	M8	357	387
RDM1E-800	295	47	87	_	M16	16	16	305	61	97	148	16	M12	M8	_	_

Installation board hole-opening dimensions

(1) See Figure 7 for front of board wiring installation board hole-opening dimensions (X–X, Y–Y are three-pole circuit breaker centers)

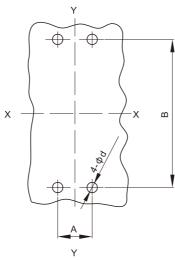


Figure 7 Front of board wiring installation board hole-opening dimensions

Model		RDM1	E-125	RDM′	IE-250	RDM1E-	-400/630	RDM1E-800		
Number of pole		3	4	3	4	3 4		3	4	
Installation board hole opening dimension (mm)	Α	30		35	70	44		70		
	В	12	129		126		94	24	43	
5 :	d	4	.5	4.5		7		7		

(2) See Figure 8 for rear wiring installation board hole-opening dimensions (X-X, Y-Y are three-pole circuit breaker centers)

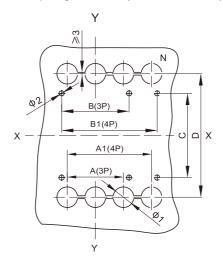


Figure 8 Rear wiring installation board hole-opening dimensions

Model		RDM1E-125		RDM1E-250		RDM1E-400/630		RDM1E-800	
Number of pole		3	4	3	4	3	4	3	4
Installation board hole opening dimension (mm)	Α	60	-	70	-	96	_	140	_
	A1	_	90	_	105	_	144	_	210
	В	72	_	87	-	124	_	178	_
	В1	-	102	-	122	-	172	-	248
	С	90		93		164		158	
	D	132		144		224		243	
	ф1	22		24		32		48	
	ф2	5.5		5.5		6.5		7	

(3) See Figure 9 for plug-in front of plate wiring mounting plate opening dimensions (X-X, Y-Y are 3 pole circuit breaker centers)

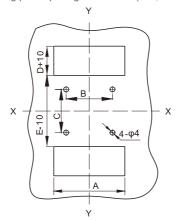


Figure 9 Plug-in front-of-board wiring mounting plate opening dimensions

Model		RDM1E-125	RDM1E-250	RDM1E-400/630	
Number of pole		3	3	3	
	Α	94	110	152	
Installation board hole opening dimension (mm)	В	60	70	60	
	С	56	54	129	
	D	41	66	65	
	E	90	91	166	
	d	6.5	6.5	8.5	

(4) See Figure 10 for plug-in rear wiring installation board hole-opening dimensions (X-X, Y-Y are three-pole circuit breaker centers)

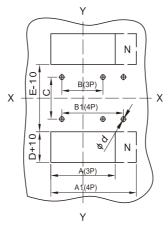
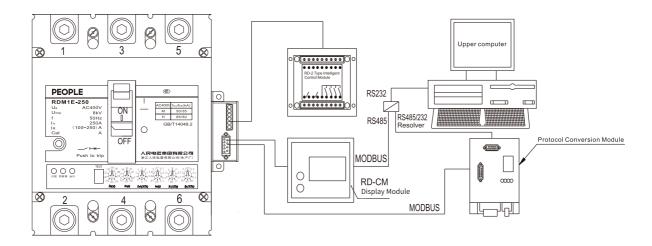


Figure 10 Plug-in rear wiring installation board hole-opening dimensions

Model		RDM1E-125		RDM1E-250		RDM1E-400/630		RDM1E-800	
Number of pole		3	4	3	4	3	4	3	4
	Α	94	_	107	_	149	_	210	_
	A1	_	129	_	145	_	200	_	290
Installation board hale opening dimension(mm)	В	60	_	70	_	60	_	90	_
	B1	_	90	-	105	_	108	_	162
	С	56		54		129		146	
	D	38		45.5		54.5		72	
	Е	92		95		171		181	
	d	6.5		6.5		8.5		11	

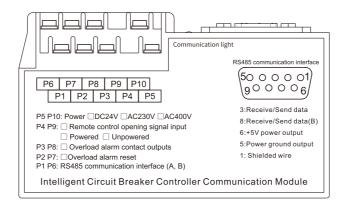
Communication Functions of Circuit Breakers


RDM1E intelligent circuit breaker with electric operating mechanism is connected with the upper computer (such as computer), and can realize remote four remote function through the communication interface. RS485 interface, Modbus-RTU protocol, communication baud rate 9600K. In addition, with the addition of the RDM1E circuit breaker controller (optional), the parameters of the circuit breaker can be read and modified directly on site.

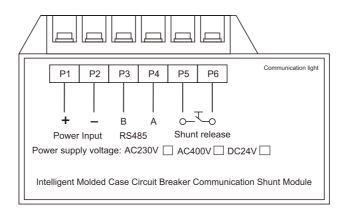
Communication interfaces and external modules for intelligent circuit breakers

RDM1E series inteligent molded case circuit breakers are equipped with communication interace and MODBUS communication protocol. RDM1E is not used for network communication, but when they are used individually, the hand-held programmer can perform operations such as setting of protection characteristics on the circuit breakers. If RDM1E is used for network communication, they can be directly connected to the corresponding field bus;

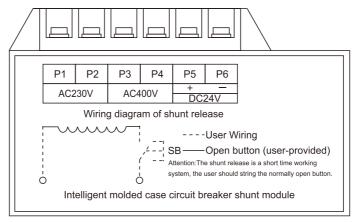
Communication network of RDM1E series communicable intelligent molded case circuit breaker


The communication network can be connected by referring to the following scheme. Different protocol modules can be selected for different protocols to convert MOBBUS to PROFIBU S-DP and other protocols.

External Configuration Module for RDM1E Series Communicable Intelligent Molded Case Circuit Breakers (Optional)


Alarm non-release module

When the product is used in fire fighting circuit, the controller is required to be alarmed for non-release function, at this time, it is necessary to confiqure the overload alarm non-release module to protect the continuity of power supply and meet the requirements of GB50054 Article 6.3.6. The module can monitor the parameter setting of circuit breaker through communication function, remote communication to open the main circuit, output alarm signal (provide pair of passive contacts) when overload in the circuit, etc. It can be used for centralized control and management of electric power department and electric power users.


Intelligent Circuit Breaker Communication Shunti Module

It can be used for monitoring the on-site operating parameters of intelligent circuit breaker to replace the meter display function, automatic remote communication to open the main circuit, and at the same time provide auxiliary working power to the intelligent circuit breaker. The green light is always on when the working power of the module is turned on, and the green light flashes during normal communication.

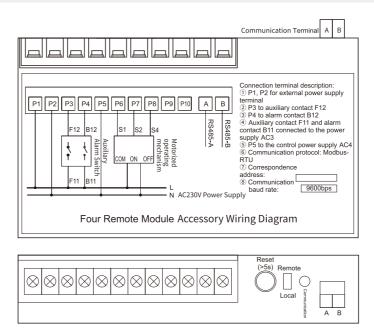
Intelligent Circuit Breaker Shunt Module

It can be used to cooperate with intelligent circuit breakers, automatic remote communication to open the main circuit, and can provide the working power supply voltage of AC230V, AC400V, DC24V.

Four-remote communication module

The controller has a communication function, need to cooperate with the corresponding accessories to realize the function (communication module thickness size of 25mm). The parameters of communication characteristics are as follows;

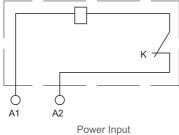
Interface: external communication accessory of the controller, the accessory is a standard RS485 interface;


Baud rate (bps): 9600 by default, the remote control can be set in the range of 2400, 4800, 9600, 19200, 38400;

Communication Format: Data Bit: 8; Checksum: even; Stop Bit: 1;

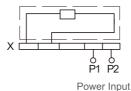
Communication Protocol: Modbus RTU, Slave Mode;

Device address: 10 (default); Remote control settable range 1~255.


No.	Name	10p Accessory Function	Rated supply voltage (range)	Rated control signal voltage (range)				
4	Four Remote	Four Remote Communication+	DC24V(85%-110%)	Status signal DC24V (85%-110%) Electrical operation signal DC24V				
ı	Accessory	Repeat Keys+ Working Indicator	AC230V(85%-110%)	Status signal AC230V (85%-110%) Electrical operation signal AC230V				
Remark	Remarks: Reset button function: press and hold for 5s; parameters such as communication baud rate and communication address are restored to factory values;							

Internal Accessories for Circuit Breakers

Shunt release


The rated control power supply voltage of the shunt release is AC50Hz, 230V, 400V; DC24V, the circuit breaker can be reliably tripped under 85% of the rated control power supply voltage, the user wiring diagram is shown in the following figure.

K: The micro-switch inside the shunt release in series with the coil is a normally closed contact, which opens its own when the circuit breaker is tripped and closes when the circuit breaker is closed.

Undervoltage release

When the voltage drops (even slowly) to the rated voltage within the range of 70%~35%, the undervoltage release should be operated; when it is lower than 35% of the rated voltage of the release, the undervoltage release should be able to prevent the circuit breaker from closing; when the supply voltage is equal to or greater than 85%, the undervoltage release should be able to ensure that the circuit breaker can be closed reliably. According to the user's needs, the circuit breaker accessories can be directly led out or installed terminal block, the user wiring see the following figure.

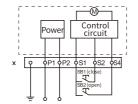
WARNING: The undervoltage release must be energized before the circuit breaker can be re-triggered and closed, otherwise the circuit breaker will be damaged!

External Undervoltage Module Wiring Diagram (dashed box shows internal circuit breaker wiring diagram)

Auxiliary contact

The auxiliary contacts of the circuit breaker are divided into two groups, each of which is electrically inseparable. User wiring is shown in the diagram below.

Alarm contact


The alarm contacts are inactive during normal closing and breaking of the circuit breaker, and the contacts change their original position only after free release or fault tripping.

External Accessories for Circuit Breakers

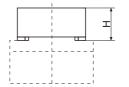
Motorized operating mechanism

The wiring diagram of the motorized operating mechanism is shown below (the internal wiring diagram of the motorized operating mechanism is shown in the dotted box)

Voltage specification: AC50Hz 110V, 230V DC110V, 220V power input

Conforms to the description: SB1, SB2 operation buttons

(user-provided) X terminal block

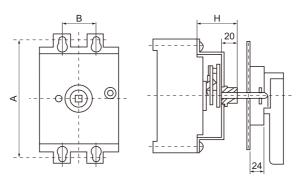

P1, P2 is external power input

NOTE: After the circuit breaker has tripped off, the motorized operating mechanism must first re-couple the circuit breaker before it can close the circuit breaker.

The operating current, power and life of the electric operating mechanism are shown in the table below.

Circuit breaker for matching use	Operating current(A)	Motor power (W)	Lifespan (times)
RDM1E-125	≤0.5	14	10000
RDM1E-250	≤0.5	14	8000
RDM1E-400/630	≤2	35	5000
RDM1E-800	≤2	35	5000

The height of the motorized operating mechanism is shown in the chart below.

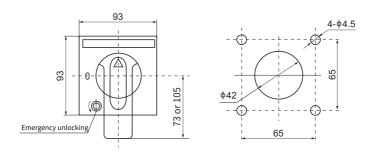


Matching circuit breaker type	H(mm)
RDM1E-125	94
RDM1E-250	90
RDM1E-400/630	145
RDM1E-800	147

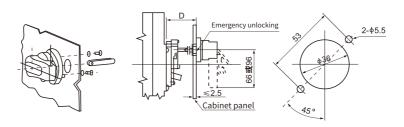
Height of motorized operating mechanism

Rotation manual operating mechanism (common to three-pole and four-pole circuit breakers)

mechanism is dedicated to RDM1E series molded circuit breakers, through the rotation of the handle to achieve the circuit breaker closing, This opening and reclosing and drawer cabinets, distribution cabinets, power boxes, etc. in the panel operation requirements, and to ensure that the circuit breaker is in the closed circuit breaker cabinet door can not be opened (i.e., interlocked with the door). Its external dimensions are shown in the following figure and table.



Circuit breaker for matching use	A(mm)	B(mm)	H(mm)
RDM1E-125	104	30	49
RDM1E-250	143	35	55
RDM1E-400/630	194	138	74
RDM1E-800	243	198	66


Rotation manual operating mechanism

Handle manual operating mechanism can be equipped with two kinds of operating handle: one for the "F" type square handle; the other for the "A" type round handle, the size of its door opening see the figure below. Turning the handle characteristics of the manual operating mechanism:

- \Box The cabinet door cannot be opened when the circuit breaker is in the closed state.
- \Box If the operating handle or manual operating mechanism is faulty in the closed state, the cabinet door can be opened by means of the emergency touch-lock device on the operating handle.
- ☐ Corresponding to different specifications of the manual operating mechanism, the matching manual operating handle, the door plate opening is consistent.

"F" type square handle profile cabinet door opening size (opening center distance from the hinge is not less than 100mm)

L size: RDM1E-125 is 65, RDM1E-250 is 95, RDM1E-400 is 125
"A" type round handle profile cabinet door opening size (the center of the opening from the hinge distance is not less than 100mm)

Note:

□ Square shaft length D=150mm (default), length not greater than 150mm, in 50mm steps increments, the longest can provide 500mm,to order specify;
□ If the manual operating mechanism is equipped with "F" type handle, add "F", if it is equipped with "A" type handle, add "A".Such as CZE-100-F.

If it is not specified, the default is A type.
□ Manual operating mechanisms must be ordered from our factory as a complete set to ensure product quality. If users purchase them by themselves, our factory will not be responsible for any adverse consequences that occur after installation and assembly.